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The paper develops and discusses some new additions to the available stock of anaIytical 
solutions of the nonlinear equations of fluid motion. The motions are steady, two- 
dimensional and devoid of viscous or other rotational forces (although such forces 
must have been significant during any starting process). The fluid density is constant. 

The solutions are in two groups, referred respectively to Cartesian and polar 
co-ordinates. In  both the stream function is of separable form, i.e. expressible as a 
product of two functions, each dependent on one co-ordinate. A remarkable variety of 
motions is revealed. Those that are most significant physically are described as bends 
(rapid transitions from one rectilinear flow to another) or as loops (closed, non-circular, 
vortex-type flows). The effects of boundary layers a t  walls or instability are not 
explored. 

The paper closes with a mention of some preliminary experiments on loop flows in 
which all streamlines are ellipses and some discussion of the applicability of bend flows. 
Generalizations to axisymmetric flows and compressible flows are also mentioned 
briefly. 

1. Introduction 
From the early days of analytical fluid mechanics (Lagrange 1781; Stokes 1842) it 

has been known that the dynamic behaviour of two-dimensional, steady, constant- 
density, rotational flow can be expressed in terms of the stream function $ by means 
of the general condition 

in the absence of significant viscous or other rotational forces. 
Not many classes of exact general solutions to this equation appear to be known. 

Attention has been mainly directed to cases where f takes the form 5 k2$ (kconstant) 
and ( 1 )  becomes a Helmholtz equation. The other main class which has been explored 
is that where the vorticity and f are constant everywhere and (1)  becomes merely a 
Poisson equation (Batchelor 1967, pp. 537-543). One simple family of such solutions 
is obtained by taking $ as any quadratic function of x and y. The streamlines are then 
similar, concentric conics. These flow patterns are essentially of two kinds: closed loops 
(i.e. ellipses, including circles); or bends (i.e. hyperbolas or parabolas) with flow to and 
from infinity in different directions. The hyperbolic bend flows have common asym- 
ptotes, which implies that the velocities tend to infinity a t  infinity, where the stream- 
lines crowd together. The case of the rectangular hyperbola is of course a familiar 
irrotational flow. Fraenkel (1961) gave a uniformly rotational flow lying between 
perpendicular asymptotes and involving an eddy near the origin. 

V2$ = f  ($1 (1)  
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This paper will be concerned with more general classes of flows, of which the more 
interesting are again of the two kinds loops or bends. In one case the streamlines will 
again be similar conics, but now confocal instead of concentric. We shall also find that 
many bend flows asymptote to rectilinear flows at infinity without the velocities 
increasing without limit. 

We shall not discuss the stability of the flows, nor shall we consider whether any 
boundary layers would separate in the case of small viscosity if the flows were realized 
in ducts. We shall mainly confine attention to flows where the whole flow field is 
governed by a single expression ( I ) ,  as distinct from having different regimes in 
different places (cf. Hill’s spherical vortex). 

It is recognized that fluid-mechanical investigations that are based mainly on 
mathematical forms, as here, are often artificial, because the physical cause-effect 
process as time passes is usually not adequately represented, but the nonlinear nature 
of the equations of motion present such difficulties that it would appear to be well 
worth adding to the stock of known simple solutions, for comparison with observed 
flows and for contemplation as possible sources of inspiration and understanding. 

2. Separable Cartesian solutions 
We first look briefly at solutions of (1) which take the form 

$ = X ( 4  Y W ,  (2) 

v2* = +d$) (3) 

so that X”/X  + Y”/ Y = g,  (4) 

constant y gives ( X # / X ) ’  = g’X’Y 

0 = ($q’)’XY’ 

after a suitable choice of axes. It is convenient to replace ( I )  by 

in which a dash denotes appropriate differentiation. Differentiation with respect to x at 

and either X’ = 0 or ( X / X ’ )  (X”/X)’ = $g‘, a function of $. Differentiation with 
respect to y at constant x gives 

and either Y’ = 0 or $g’ = constant = A ,  say. Thus we either have X or Y constant 
(merely rectilinear shear flows) or 

g = A log + + B(constant), f = A$ log @ + B$, ( 5 )  

the general separable solution. 

Helmholtz cases ( A  = 0)  

Here X and Y take a sinusoidal, exponential, hyperbolic or linear form, e.g. 

@ = Ccoskxcosl~ 

(a regular pattern of rectangular vortex cells), which, by a suitable choice of origin, 
covers all the doubly sinusoidal cases. The cases where one or both of X and Y is linear, 
or where X is sinusoidal with Y hyperbolic or exponential (or vice versa) are less 
interesting. More interest attaches to the cases where X and Y are both exponential 
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(4 (6) ( c) 

FIGURE I.  Streamlines for the flows (a) @ = CekZcosh ly, ( b )  @ = CenZsinhly 
and (c )  @ = C(ez+eY). (a) and ( b )  not to scale. 

(or hyperbolic) functions. The doubly exponential form @ = C exp fkx + Zy) gives a 
rectilinear flow with an exponential velocity profile, but the cases 

@ = C exp kx sinh (or cosh) ly 

have greater novelty, as figure 1 reveals. In  each case all streamlines take the same 
shape; increasing @ by a factor m shifts a streamline a distance k-I logm x-wise (in (a) 
or ( b ) ) .  Case ( c )  is a particularly simple case of (a) ,  after rotation of the axes. 

In  regions P and Q the asymptotic flows are rectilinear shear flows (with slow and 
fast tendencies as indicated) and velocities a t  infinity are finite. Case (a) is a bend flow 
through an angle 2tan-’(k/Z). The bend is quite abrupt because the streamlines 
approach their asymptotes with exponential vigour. In  case (b ) ,  however, the stream- 
lines have also a common asymptote R where velocities increase without limit. In real 
fluids compressibility or cavitation would intervene as the pressure dropped there. 

The mechanics of case (a)  or ( c )  make an interesting contrast with irrotational flow 
round a bend. On the bend there is a centrifugal pressure gradient. In the irrotational 
flow, Bernoulli’s equation therefore requires the fluid to accelerate on the inside of the 
bend and decelerate on the outside, with corresponding narrowing and widening of the 
streamtubes. In  case (a) or (c), however, all streamtubes widen at the bend as the fluid 
decelerates, but because Bernoulli’s equation contains a quadratic velocity term the 
faster outer streamlines generate greater pressure rises and the centrifugal gradient 
can still occur. These ideas also apply to many of the flows which we shall discuss later 
and which behave very differently from irrotational flow. 

Finally we come to the doubly hyperbolic cases: 

@ = 4C cosh (or sinh) kx cosh (or sinh) ly. 

Where (kx( % 1 and lZyl 3 1, these become @ = Cexp ( 5 kx & Zy) with appropriate 
choices of sign. The flows have diamond-shaped streamlines, with exponential velocity 
profiles, as indicated in figure 2, except near the axes. At the axes the cases differ: near 
the x axis (a )  and ( b )  are like figure 1 (a )  while ( c )  is like figure 1 ( b ) ;  near they axis (a) is 
like figure l ( a )  while (b)  and (c )  are like figure l ( b ) ;  near the origin, however, the 
rectilinear parts of the flows are extinguished, and a stagnation point occurs there in (c ) .  

If a portion of case (a )  well away from the origin is selected, it reveals how bend flows 
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(a )  ( b )  (C) 

FIGURE 2. Streamlines for the flows (a) 11. = 4C cosh kx cosh ly, ( b )  11. = 4C sinh kx cosh ly 
and ( e )  11. = 4C sinh kx sinh l y  (not to scale). 

can follow each other virtually without mutual interference because the exponential 
settling to rectilinearity is so rapidly completed in each bend. Other convex polygonal 
flows should be physically possible, with arbitrary bend angles joining rectilinear 
stretches, each with the same exponential velocity profile. (We are assuming that the 
part of the flow near to the origin is discarded.) It is the apparent ability of these 
exponential rectilinear flows to bend swiftly through an arbitrary angle which is their 
most interesting property. The relevant length scale is the transverse distance over 
which the velocity rises by 1 : e in the rectilinear flow. We shall find other flows with 
similar properties later. 

Cases with A =i= 0 
Equations (4) and ( 5 )  imply that 

X ” / X  = A log X + C (constant), 

with a similar equation (same A )  for Y .  This integrates to 

X’2 = A X 2  log X + D X 2  + E (D, E constant), 

and 
dz 

where z = 2(log X + D / A )  and F = 2E/A.  B = 0 gives X cc exp (&Ax2), which combines 
with the equivalent Y solution to give one of the infinity of flows with concentric 
circular streamlines. But when F =I= 0 for one or both of the X and Y solutions, a great 
range of cases results. These can be found only by numerical quadrature. Rather than 
pursue these in detail, we merely state a qualitative classification of the flows in the 
form of table 1 and figure 3. F, and Fv are the values of F in the X and Y parts of the 
solution. The values 0 and l / e  prove to be crucial. Figure 3 does not distinguish the x 
and y axes, either of which may be horizontal, with the other vertical. 

Figure 3 (a)  groups the ‘U-bends’ while figure 3 ( b )  groups the closed vortices and 
figure 3 (c) groups the right-angle bends. When no straight edge occurs, the flow field is 
unbounded. Where streamlines share a common asymptote velocities tend to infinity. 
The A = 0 cases (figures 2a, b and c )  belong respectively to the groups shown in 
figures 3 (biii), 3 (dii) and 3 (ci). 
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( i i )  

(iii) 

(GJ (iii) 

(ii) (iii) 

(ii) (iii) 

(ii) (iii) 

(i) (ii) 

FIGURE 3. Alternative streamline patterns for Cartesian-separable rotational flows (A + 0) 
(not to scale). Table 1 lists the conditions for their occurrence. 
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(a) A positive 

F, d 0 0 < Fz < l/e F, = l /e F, > l/e 

F" d 0 (biii) (biii) , (fiii) (aiii), (ei) (dii) 
0 < F,, < l/e (biii), (fiii) (bi) , (biii) , (f iii) (aii), (aiii), (ei), (eii) (ai), (dii) 
F,, = I/e (aiii), (ei) (aii), (aiii), (ei), (eii) (cii), (ciii), (eiii) (civ), (di) 
F,, > 1/e (dii) (ai), (dii) (civ), (di) (4 

(b) Anegatiwe 

F* < 0 Fz = 0 0 < F, < l/e 

F9 < 0 (bi) (bii) (f 1) 
F,, = 0 (bii) (biii) (f ii) 
0 < P,  < l/e (fi) (f ii) (si), (gii) 

TABLE 1. The entries refer to figure 3 numbers. 

Figure 3 ( e )  is an unusual group in each member of which a limiting streamline S 
separates two kinds of flow. In (i) and (ii) the region D locally approaches Couette flow, 
with the velocity vanishing on the axis of symmetry. A curvilinear triangle of stream- 
lines would otherwise be highly suspect ! The arrows show a consistent set of flow 
directions. 

Figures 3 (f) and (9) contain branch points where the velocity is zero. Figures 3 (f) 
repeat indefinitely in one direction while figures 3 (9) repeat in both directions. Also 
figure 3 (fi) could be repeated indefinitely in parallel strips and would then contrast 
with figure 3 (gi), with its staggered vortex rows. Figure 3 (gii) is not figure 3 (bi) rotated 
through 45'. All the vortices in figures 3 ( b ) ,  (f) and ( 9 )  are not singular a t  their 
centres, the vorticity being finite there. Figure 3 (f)  is very reminiscent of the linearized 
solutions found by Lautard & Zeytounian (1970). 

Enough has now been said to reveal the extraordinary variety of the Cartesian- 
separable rotational flows. 

3. Separable polar solutions 
An elegant range of solutions of (1) emerges if we postulate the separable form 

$ = R(r)H(0) I ( 6 )  

(7 1 
in terms of the polar co-ordinates r and 0. Inserted into (3) this gives 

r2(R" + R'/r)/R i- H"/H = r2g, 

which differentiated at constant r gives either 

H' = 0 or (H/H')(H"/H)' = rz(g'$). 

Differentiating again at constant B gives 

r2(g'$)' $R'/R + 2rg'$ = 0 
and either 

constant = k-l, say, (9'$)' R g'=O, R'=O or --=--= 
29' R'r 
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as can be seen by differentiating again at  constant r. From (8) we have 

R = rk, 

if we absorb the constant into H .  Equation (8) also yields 

&kg'$+g = E (constant) 

and 

which is compatible with (7) if E = 0 and if 

g = E + F$-z/k = E + Fr-2H-2/k (F  constant), 

693 

k2 + H"/H = FH-2/k, ( 9 )  

the differential equation that determines H .  The streamlines are geometrically similar 
along radial rays from the origin. The solution satisfies ( 1 )  in the form 

V2$ = F$", where n = 1 - 2 /k .  (10 )  

These solutions should not be confused with the viscous ones of Moffatt (1964),  in which 
$ was also of the form rkH(0) .  

In  passing we also noted the alternatives: H' = 0, R' = 0 or g' = 0. The first corre- 
sponds to arbitrary concentric circular motions and the second to uniform radial 
motion. The third case is more significant and corresponds to solutions of the Helmholtz 

V2$ = F$. equation 

Though this corresponds to (10) with n = 1 ,  apparently implying that k + co, there are 
now solutions other than the €orm R = rk. As Lamb (1932, p. 245) points out, R can be 
a Bessel function, with H sinusoidal. (See also Batchelor 1967, p. 535 . )  We shall confine 
attention here to cases where R = rk, which do not appear to have been explored. 

If k $. 1, ( 9 )  integrates to 

k2H2+H12- BH2(k-1)/k = C (constant), 

where B = k F / ( k -  l),  and so , .  
d H  1 (C - k2H2 + BHm)t  , e = +  

in which m = 2 ( k -  l ) / k .  ( 1 1 )  

If P $. 0, we may simplify by setting H = hlP /k (k  - 1 ) J t k  to get 

in which A = (C /k2)  Ik(k- 1)/Flk. We discuss the case k = 1 later. 
In all subsequent work we shall assume that scaling has been done so as to make H 

and h identical, i.e. IF/k(k-  l ) [@ = 1 .  Then, when streamlines are plotted, we shall 
plot the line $ = 1. 

Classi$cation of the cases 
The possible cases cover all combinations of A and k and the sign of the last term under 
the square root in (12 ) .  We shall use the phrases positive choice and negative choice to 
distinguish cases under the last item. We shall also consider only situations where h 
and H are positive. The real, positive value of hm will always be selected whenever there 
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are alternatives. If H gets to zero and changes sign, it means that all streamlines have 
gone to infinity or into the origin and have reappeared in what, from a physical point of 
view, would be a separate flow which would normally be discarded. 

If P = 0 the flows are well-known irrotational ones with streamlines of the petal 
(k < 0)  or bend (k > 0)  types, respectively, going into the origin or to infinity (along 
a common radial asymptote) at distinct values of 8. 

When P + 0,  a variety of flows results. For brevity we merely state their classifica- 
tion in table 2. The loop and the bend cases are physically the most significant. Cases 
for which the two values of k are mutually reciprocal form dual pairs in which the 
h-integral takes the same form if h is replaced by IA14hk. The extreme value A, of 
h2 T hm plays a crucial role. In  the loop flows the vorticity a t  the origin is zero if k > 2, 
finite if k = 2 and unbounded if k < 2. 

When A = 0, putting p 2  = hm-2- 1 leads to h = lcos8lk (to a suitable 8-origin), 
i.e. rectilinear flow with velocity vYcc ~ ~ - 1 .  When A + 0,  A becomes negligible as 
r + 00 if k < 1 (positive choice) and the flow approaches an ‘ A  = 0’  flow. But, 
if k > 1, 8 behaves like h/At as r + co and so the streamlines have a common 
asymptote. 

When k = 1 we find that 

if H = h IF]’. dh 
=/[A-(h2+210gh)]t 

In  table 2 the phrases ‘positive choice’ and ‘negative choice’ refer to the signs as 
written in (13), and A, = 1 for k = 1. 

Cases expressible in standard functions 
The cases (in addition to A = 0 )  where solutions exist in terms of standard functions 
are the dual pairs k = (8 ,2)  and ( - &, - 2) and the self-dual case k = - 1. 

The case k = 2. These uniform-vorticity solutions have already been mentioned. We 
find that $/r2 = h = f 8 - (A + &)* cos 20, where the plus or minus sign corresponds to 
a positive or negative choice. The streamlines are concentric conics. For 

0 > A > A,  = - 4  
(positive choice), the loop flows are merely ellipses (with two maxima and minima for 
r per circuit) and always close after one circuit, whatever the value of A .  For A > 0, 
the bend flows are hyperbolas with common asymptotes 8 = f 9 tan-l(ZA4). They 
are concave, i.e. could lie within an angle less than 77 between two walls intersecting 
at the origin. For A = 0, the conic becomes two parallel straight lines (Couette 

The case k = 8. Here +A - ($A2 & I)* cos 0 = h2 = f $2/r, and the streamlines are 
confocal conics. The choice of sign under the root corresponds to a positive or negative 
choice. The bend flows are hyperbolae, each streamline having a different pair of 
asymptotes. At infinity $ varies like xi, if the flow is parallel to the y axis. Either 
branch of the hyperbola may be chosen and the bend may be concave (in the sense just 
used) or convex. The asymptotes are parallel to 8 = f tan-l(Z/A). The loop flows all 
close after one circuit and are ellipses (with a single maximum and minimum for r per 
circuit) for A > A ,  = 2. This case is peculiar in that the velocity is unbounded at the 

flow). 
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k < O  O < k G l  k >  1 

A > A ,  OtoCO* A > 0 bend? 
A = A,  limit circle bend* (t if k = 1) A = 0 rectilinear 

choice A = o rectilinear unless k = 1) A < A ,  impossible 

Negative 
choice { 2 8 impossible 

Notes 
(i) * indicates finite velocities and distinct streamlines in rectilinear flow a t  CO. 

(ii) t indicates unbounded velocities and common asymptote at 03. 

(iii) ‘ 0 to CO’ indicates that streamlines go from 0 to co over a finite range of 8. 
(iv) ‘limit circle’ indicates that streamlines spiral into a circle from 0 or CO. (Discarded 

because streamlines intersect.) 
(v) petal ’ indicates that streamlines go to and from 0 over a k i t e  range of 8, with a single 

maximum for r. 
(vi) ‘ bend’ indicates that streamlines go to and from co over a finite range of 8, with a single 

minimum for r. 
(vii) ‘ rectilinear’ indicates shear flow with $ like zk, say. 
(viii) ‘ loop ’ indicates that streamlines oscillate between a maximum and minimum for r, 

8 increasing monotonically. Of interest only when the loop closes after one circuit 
(otherwise streamline crossing occurs). 

Positive A > A > 0 petal and bend* ( A  = 0 rectilinear 0 > A  > A,loop 

A i 0 bend* 
petal A > A ,  loop A > 0 bendt 

A f A ,  impossible A 6 0 impossible 

1 

TABLE 2 

origin and there is an unbalanced force a t  this point, i.e. in any physical realization the 
singularity would have to be replaced by a slender, load-bearing body of confocal- 
elliptical cross-section. By integrating the pressure round any streamline, with the aid 
of Bernoulli’s equation, this transverse force is found to be 

+rp[C- l)/(C+ 1)y 

per unit length, where C = +A and p is the density. 
It is also worth noting that in this case it is possible to surround a finite elliptical 

region of the rotational flow with an irrotational flow which at  infinity is a uniform 
stream in the y direction. If @ = 1 is the dividing streamline, the velocity at  infinity is 
&[(C - l ) / (C + 1)]9. The transverse force can of course be calculated alternatively from 
the Zhukhovskii circulation/lift theorem. There is a detached stagnation point at  
0 = 0,  r = 2C2/(C2- 1)j. The complex potential for the irrotational flow is given 
parametrically by 

qi + i+ = i + iC{e sin 2c - 2g>, 

where x = x + i y  = (cos c+ iD sin c)2/C( 1 - e), e = ( 1  - C2)* (the eccentricity of the 
ellipse) and D = [( 1 - e)/( 1 + e)]*. (5 real corresponds to @ = 1 .) 

The cmes k = - 1, - 2 ,  - &. These cases can be expressed in terms of elliptic integrals 
of the first kind. Some details are given in the appendix. However, as extensive com- 
puting has to be done to explore the other cases, it is simpler to treat these cases in the 
same way. (The cases k = 2, 9, Q ,  8 ,  8, +, 3, 4 can be expressed in terms of elliptic 
integrals of the third kind, but the value of this procedure is even more dubious.) If 
F = 0,  irrotational petal flows result, and Ic = - 1,  - 2 and - 4 give respectively 
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I 1 I I I I 
7 t 1 * 3 4 4) 5 7- 

FIUURE 4. Loop flows: the variation of O1 with k and A .  The arrows indicate 
the trend as A increases over the permissible range. 

streamlines which are paired circles (through the origin: a dipole flow), Bernoulli’s 
lemniscate and the cardioid. The limit-circle cases can also be simply solved: 

2-4 tanh (8/24) for k = 1 ( A  = A ,  = a), 
h =  tanh28-+ for k = - 2  ( A = A o = 2 T ) ,  i [&(3  tanh248 - 1) 3414 for k = - 9 ( A  = A,  = - 2/33).  

In  each case tanh can be replaced by coth, to yield the other branch. 

Loop jlows 
Here the important quantity is 8,, the difference between the values of 8 at which the 
denominator in (12) vanishes. For a closed loop we require 8, = 7~ + (integer). In  fact 
8, + m/(2k)4 as A + A,, 8, -+ in- as A + 0 (k > 1 )  and -+ n/2k as A -+ co (0 < k < 1). 
Figure 4 reveals what closed loops are possible. k = 2 or 8 each gives only one value of 
8, and these values are not available for other values of k. k: large implies velocity 
variation so extreme as to be rather unlikely. 

Figure 5 gives the results of computations to find the pairs of values of A and k which 
yield closed loops. As - A  decreases, the streamline shape changes from a circle 
towards a polygon, with very abrupt bends joining rectilinear stretches, behaviour 
reminiscent of that discussed in 5 2. Figure 6 shows a portion of such cases for 8, = 5. 
and in-. 

Bend jiows 
Here the important quantity is 8,, the bend semi-angle, i.e. the difference between 
those values of 0 a t  which r -+ co and reaches its minimum. Figure 7 summarizes the 
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k 
FIGURE 5 .  Loop flows: the values of A and k for which the streamlines 

form closed loops after one circuit of the origin. 

results of extensive computations to find 8, as a function of A and k .  Values of 8, 
greater than n are of no interest because of streamline crossing. As A -+ 00, if k > 0, 
8, + n / 2 k .  The figure includes the case k = 1, even though this is singular and does not 
fit into the smooth sequence of the other cases. 

The singular case Ic = 0 does however fit into the smooth sequence, as the figure 
reveals, even though it is not physically realizable. When lkl is very small and Iml very 
large, in the quantity 

the term h2 is significant only when h is near 1, and so we may replace it by 1.  Then 
Q = A- 1 + h m  = p 2 ,  say, and 

Q = A-h2+hm 

Hence p M (1-A)*cot[(l-A)*8] 
and on the streamline 

r M (l-A)*cosec[(1-A)*8]. 

The bend semi-angle 8, = n/2 (  1 -A)*.  Cases where this approach fails because A is 
near 1 are of no interest because 8, is too large. 

The insensitivity of 8, to the value of k in the range 0 > A > - 1 is quite remarkable. 
Figure 8 shows specimen streamlines for various cases where 8, = an or in, i.e. 

concave and convex right-angle bends. The convex bends occur only for k < 9.  As 
k -+ - co, each convex bend streamline becomes a quarter-circle (centred a t  0 )  joining 
two rectilinear stretches, and each concave bend streamline becomes an instant bend 

= 1 



698 J .  A .  Shercliff 

I 
FIQURE 6. Loop flows: portions of streamlines for 19, = in and *n, showing the trend from circular 
to  triangular or square form. (These curves are the lines ?,h = 1 in the case where IP/lc(k - 1) I * k  = 1.) 

joining two rectilinear stretches. This behaviour can be confirmed analytically. Figure 8 
includes only those bends that have distinct streamlines (and so finite velocities) at 
infinity. Note that the concave bends are ones where the fluid slows down in the bend, 
as in the bend flows in figure 1.  A difference from figure 1 is that a rectilinear flow in 
which $ 0 ~  xk, say, can bend either way (i.e. towards or away from its high velocity 
side), following the solutions presented here, but the rectilinear flow in figure 1, where 
$ K ekx ,  say, can bend only towards its low velocity side, following the solutions 
presented in 0 2. It perhaps needs emphasizing that this is a mathematical result; fluid 
forced along a bent duct will go round a bend either way, but not following the solutions 
presented here. 
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A 

FIGURE 7. Bend flows: the variation of 6, with k and A .  Note the changes of scale at  A = i 1 and 
the enlarged version of the curves for - 1 < A < 0 in the top left-hand corner, necessary to 
distinguish them. 

In  figure 8, in the rectilinear flow on either side of each bend $ cc xk, if x is the 
distance from the parallel axis, and vy cc x k - l ,  where k - 1 is negative in all cases. Thus 
the velocities are highest on those streamlines nearest to the origin. 

Another point to note is that the rapidity with which the rectilinear flow is 
approached on either side of the bend begins to fall off greatly once k rises past zero 
(e.g. see k = 0.65 curve), while for k negative the adjustment is swift, as for the 
exponential bend flows in Q 2. 

Realization and application of bend jlows 
The bend flows discussed here could in principle be produced experimentally, provided 
that instabilities, boundary-layer separation or secondary flows did not set in so 
rapidly downstream as to preclude all observation of the desired flow. The flows could 
emerge from an upstream system for generating the appropriate vorticity distribution, 
before being deflected by correctly shaped walls. 
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/ I I 
, 
\ 

FIGURE 8. Bend flows: portions of streamlines for 8, = ;fn (concave bends, A negative) and 8, = $R 

(convex bends, A positive). These curves are the lines @ = 1 in the case where IB'/k(k- 1) Iik = 1. 

It would be interesting, for instance, to experiment with ducted bend flows for 
which k = - 1, where a portion (x > 0) of rectilinear flow in which the velocity varies 
like x - ~ ,  x being transverse to the stream, could be bent through go", say, towards 
either higher or lower x. One imagines that separation would be most delayed in the 
latter case, a 'convex' bend in which the pressure falls as the bend is entered. It 
remains to be seen whether such flows are well enough behaved to be of practical 
engineering interest, and whether the presence of vorticity makes the stream more 
easily deflected, as the mathematics might suggest. It is conceivable that the flows 
might find application in situations such as VTOL aviation where swift deflexion of a 
jet by the introduction of curved walls into the stream is required, particularly if the 
need for turning vanes internal to the stream could be eliminated. The penalty would 
be the need for vorticity to be introduced into the stream, although this might readily 
be made to result from the upstream devices producing the flow. A non-uniform jet 
has less thrust per energy content, however, and vorticity generation by dissipative 
processes is undesirable in a power application. Non-uniform heat release might be 
a more attractive proposition. 
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The theoretical work presented here can readily be extended. For instance, there are 
axisymmetric analogues in cylindrical or spherical polar co-ordinates with azimuthal 
vorticity rings. Physically the axisymmetric flows are rather more interesting than the 
two-dimensional ones because the vorticity-stretching mechanism is active and 
(vorticity) + (distance from axis) is nowf($), $ being Stokes's stream function. They 
might also be easier to produce experimentally than two-dimensional flows, which 
involve side walls. Their scope is somewhat more limited however because intersections 
of streamlines with the axis are excluded as distributed sources are physically un- 
acceptable. It does not appear to be possible analytically to integrate the second-order 
differential equation that is analogous to (9) in general, however, although the case 
where + = rh(0) is tractable. Some axisymmetric rotational flows are of course well 
known. Hill's spherical vortex is a compound flow, made up from two flow regimes. 

A further extension of the two-dimensional polar solutions is possible: to rotational 
compressible perfect gas flow, where in compliance with Crocco's theorem there are 
variations in stagnation enthalpy or entropy or both. The stream function @ now 
refers to mass flow, not volume flow, and each of the quantities (vorticity/density), 
stagnation enthalpy and entropy is proportional to an appropriate power of @. The 
physical interest here arises because thermodynamic processes (combustion, shocks, 
etc.) offer the possibility of producing controlled distributions of vorticity of the kind 
discussed in this paper. 

Experiments on loop Jlows 
Some preliminary experiments have been conducted on the two kinds of elliptical 
loop flows with k = Q or 2. The concentric-elliptical flows (k = 2) can easily be produced 
for limited periods by steadily rotating a cylindrical tank of elliptical cross-section full 
of water about an axis through its centre parallel to its generators, until the water is 
rotating like a solid body, and then rapidly stopping the tank. A Perspex tank with 
major and minor axes of 420 and 280 mm and a distance of 150 mm between its plane 
ends has been employed, rotating at  speeds of up to a quarter of a revolution per second. 
It has been found that the elliptical motion when the tank is stopped is very stable and 
persists for a few revolutions before it is progressively disrupted by a combination of 
secondary flow (due to the boundary layers on the plane walls) and weak turbulence 
originating in the boundary layers. (The same agencies also establish the initial steady 
motion in the rotating tank.) The readiness of the fluid to move with uniform vorticity 
is of course to be expected in view of Batchelor's (1956) results. Figure 9 (plate 1) shows 
some of the results, achieved by the hydrogen-bubble technique. It is easily shown that 
the flows with k = 2 have particularly simple kinematic properties, whereby uniform 
rotation is combined with a deformation rate whose principal axes are always a t  45" 
to the axis of the ellipse. A key feature is that the rotation time of a fluid element is also 
its orbit time, just as in the original solid-body rotation, and so radial lines stay radial, 
while they shorten and extend periodically. This particular experiment and its 
variants obviously have considerable potential for educational purposes. 

First attempts to produce confocal (k = Q) elliptical flows in the same tank by 
generating swirling flows with a tangential inlet a t  the periphery and a perforated, 
tubular sink at  the focus, capable of carrying the side force, have revealed that 
realizing such motions will be a very difficult assignment. The turbulence tends to make 
the flows cling to what can only be called Batchelor (1956) behaviour, i.e. they tend to 
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maintain uniform mean vorticity and therefore approximate more closely to the con- 
centric (k = 2) elliptical flows. 

Appendix. Bend cases expressible in terms of elliptic integrals of the first 
kind, P(g5,K) 

Here K is used instead of k, which in this paper has a different significance. 
(a)  The case k = - 1. Here 

dh 
=Jhm (h4-h2+A)t '  

Along the streamline $ = 1, r = h. 
(i) If A is positive ( < t),  8 = (1  + K2)*F(g5, K ) ,  where 

h2( 1 + K ) 2  = cosec2 g 5 ,  A )  = K/(  1 + K 2 ) .  

(ii) If A is negative, 8 = ( 1  - 2K2)3F(g5, K ) ,  where 

h2( 1 - 2K2) = cosec2 g5 - K2, ( - A ) t  = K (  1 - Kz)t/(  1 - 2K2). 

The right-angle bends occur with A = 0.228 and - 6.40. 8, is given by g5 = $ 7 ~ .  
( b )  The case k = -2. Here 

dh 
h (h3-h2+A)3' e = ,  's 

Along the streamline $ = 1, r = ht. Let a be the largest (or only) root of 2 3  - 2 2  + A  = 0. 

p =  ~ { 3 u - l + [ ( l - a ) ( 1 + 3 a ) ] ~ } =  (h-a)tan2q5, K 2 =  2-(3a-l)/p.  

(i) If A is positive ( < &), 8 = p-iF(g5, K ) ,  where g5 = $ 7 ~  gives 8, and 

(ii) If A is negative, 8 = ip-4 F(g5, K ) ,  where g5 ranges from 0 to 7 ~ ,  g5 = 7~ gives 8, and 

p = [a/(3~-2)]t  = (h-a)tan2$g5, K 2  = 4-(3u-l)/4p. 

The right-angle bends occur with A = 0.142 and - 13.2. 
( c )  The case k = - $. Here 

Along the streamline $ = 1, r = h2. 
(i) If A is positive ( < 2/38), let a be the middle root of Z 3 - Z 2 + A 2  = 0. Then 

8 = Zp-3(F(g5,K)-P(g5,,K)), where g5 ranges from g5,  to in, g5 = $ 7 ~  gives 8,, 
p = [( 1 + 3a) (1 - a)]i, tan g5,  = [(a +p - l)/Za]i and 

K 2 =  $ + ( 3 ~ - 1 ) / 2 p ,  A / h 2 = ~ - 3 ( 3 ~ + p - 1 ) c o s 2 g 5 .  

(ii) If A is negative and > - 2/38, let a be the largest root of Z3 + Z2 - A2 = 0. Then 
8 = 2p-4 F(g5, K )  - F(g5,, K ) ) ,  where g5 ranges from g5,  to 0,  g5 = 0 gives O,, 

p = $ { 3 ~ + 1 + [ ( ~ + 1 ) ( 1 - 3 ~ ) ] * } ,  tan$,= [a/(2a+1-p)]i 

and K2 = (3a + 1 ) / p  - 1 ,  - A/h2 = a - (3a + 1 - p )  sin2 g 5 .  
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(iii) If A is negative and < - 2/38, let a be the only root of Z3+Zz- A2 = 0. Then 
0 = p-&F(q50, K) -F(q5, K)), where q5 ranges from q50 to 0, q5 = 0 gives B0, 

p = [a(3a + 2)]4, tan 4q50 = (alp)* 
and K 2  = ++(1+3a)/4p, -A/h2 = a-ptan2+q5. 

The right-angle bends occur at A = 0.324 and - 4.36. 
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